
Did you clear
the cache?
A Contextual Tour of Rendering Efficiently

WHO ARE WE?

Stephen Lucero

/in/srlucero

/u/slucero

A true developer at heart, Stephen brings eight years of Drupal experience

to his role as the Director of Engineering and Developer Operations at

Forum One. When faced with a challenge or a task, he enjoys finding an

elegant solution to solve it and enjoys it even more when he has the

opportunity to automate the task in some way.

Throughout his career he’s had the privilege of working with a lot of

talented individuals who excel in their own varied disciplines. This has

provided a lot of influence to embrace a strong multidisciplinary

perspective toward projects to achieve the most complete end product.

By embracing the goal of encouraging team members to explore beyond

their familiar responsibilities and learn from each other, Stephen has seen

significant success both personally and with coworkers to adopt a

cross-functional approach toward project development. This has allowed

teams to work more cohesively for more opportunity to learn and grow

during the build of a more complete and satisfying end result.

http://www.linkedin.com/in/srlucero
http://www.drupal.org/u/slucero

We’ve been at this for 23 years.

We’ve partnered with more than 1,000 organizations and government agencies.

We’ve helped them better reach their mission on over 2,000 projects.

We are experts in digital strategy, creative, technology, data, and user experience.

About Forum One

We create experiences that make an impact.

● 10 years engineering experience

● 3+ year in Drupal

● When I am not programming or learning more

about Drupal, I am heading to the trail head with

my family.

Rob Powell

u/robert-powell-
boston

/u/robpowell

About Mediacurrent

Who We Are

Mediacurrent is a full-service digital agency that

implements world class open source software

development, strategy, and design to achieve

defined goals for enterprise organizations

seeking a better return on investment.

Overview
∎ Cache - What is it and why do we need it?
∎ D8’s Cache API’s special sauce - cacheable metadata
∎ Dashboard caching exploration
∎ Caching tips and tricks
∎ Common gotchas, modules, and resources to save the day

Why Cache??

Cache Metadata

Max-age
How long a piece of
cached data “lives” for.

Cache tags
Granular control to
invalidate specific cached
entries.

Cache contexts
For variations, i.e. content
dependencies on the
request details.

SCAMALYTICS
 DASHBOARDS

Spam ‘em & Scam ‘em

MAX-AGE

Max-Age
∎ Defaults to Cache::PERMANENT
∎ Defines the maximum length of time a cache may be considered

valid and used
∎ Primary method for time-based expiration
∎ Used to be the primary method for invalidation
∎ Much less commonly needed with more advanced invalidation

strategies

Pro tip: Set max-age to 0 to prevent caching for an element.

Timed Expiration
∎ Get a daily update for deposited

funds
∎ Request through an API to our

sketchy bank
∎ API response only updates once per

day
∎ Don’t need a new API request every

time

$build = [

 '#cache' => [

 // Cache for 3 hours at a time.

 // 60 seconds * 60 minutes * 3 hours

 ‘max-age’ => 10800,

],

];

Timed Expiration

CACHE
TAGS

Cache Tags
∎ Describes dependencies for the content being cached
∎ Notifies Drupal when a cache record should be invalidated.
∎ Cache entries tend to have numerous tags per entry
∎ Commonly structured as a concatenation of entry type and

identifier
□ node:5
□ user:3
□ config:system.performance

∎ Special list tags are also available: {entity_type}_list
□ Invalidates when any entity of that type is

▪ Created
▪ Updated
▪ Deleted

Node Types Widget
∎ Lists percentage of all Nodes by

content type
□ Each campaign style is a content type

∎ Changes when Nodes are:
□ Created
□ Deleted
□ Updated

Node Types Widget
$build = [
 '#cache' => [
 'tags' => [
 // Lists of nodes use this special
 // tag to invalidate whenever a
 // node is changed.
 'node_list',
],
],
];

Pro Tip: Target specific bundles with the Handy Cache Tags module

∎ Tracks completion percentage from
user profiles

∎ Changes when specific users are
updated

Team Progress Report

Team Progress Report
$build = [

 '#cache' => [

 'tags' => [

 // Identify each user.

 'user:17',

 'user:38',

 'user:53',

 'user:54',

],

],

];

CACHE
CONTEXTS

∎ A variation of cache
□ Most notably:

▪ Users / theme / route
∎ Hierarchical in nature

□ User
▪ Is_super_user
▪ Node_grants

▫ :operation
▪ .permissions
▪ .roles

▫ :role

Cache Contexts

Pro Tip: To find all the caching contexts check for services tagged name: cache.context .

∎ Unique details depending on the
viewer

∎ Changes based on the current user

Per-User Reports

Per-User Reports

$build = [
 '#cache' => [

‘tags’ => [
 // Tags for each component.
],

 'context' => [
 // Vary content per user.
 'user',
],
],
];

Per-User Reports

Role-Based Reports

Admin Only

User-specific Admin Only

$build = [
 '#cache' => [
 'context' => [
 // Vary whether a user has
 // the “admin” role.
 'user.roles:admin',
],
],
];

$build = [
 '#cache' => [
 'context' => [
 // Vary whether a user has
 // the “admin” role.
 'user.roles:admin',
],
],
];

∎ Vary content based on whether a
user is assigned the admin role

∎ Check for boolean presence of a
specific role

∎ Or check for a full combination of
roles

Role-Based Reports

STEPPING
BACK

Scamtastic Dashboard

An HTML page served by Drupal can be considered
one big render tree, with the root of the tree being
the entire page, the first level being the regions, the
second level the blocks, the third level being the
block contents, and so on.

BUBBLING

Context: user.role:admin

context: user

Context: user.role:admin

context: user.role:admin
max-age: 10800

tags: user:#

user

tags: node_list

Bubbled Data

Max-age: 10800

Tags: user.#
 node_list

Component-level Caching Behaviors

Bubbled Caching Behavior

context: user context: user.role:admin
max-age: 10800

tags: user:# tags: node_list

Second Admin User

Bubbled Caching Behavior

context: user context: user.role:admin
max-age: 10800

tags: user:# tags: node_list

New Node?

BEHIND THE
CURTAIN

Something Familiar

Cache Tables
∎ All cache tables have the same structure

□ cache_bootstrap
□ cache_config
□ cache_container
□ cache_data
□ cache_default
□ cache_discovery
□ cache_dynamic_page_cache
□ cache_entity
□ cache_menu
□ cache_page
□ cache_render

cid: Cache ID
∎ Each cache entry has to be uniquely identifiable
∎ Concatenated collection of identifiers

□ Keys for what is being cached
□ Contexts to identify variations

entity_view:block:bartik_search:[la

nguages:language_interface]=en:[the

me]=bartik:[user.permissions]=55c9d

45a6352718ec07b9b9b04cf0514415bef47

1400a4912e645f80db8808af

entity_view:block:bartik_search:[la

nguages:language_interface]=en:[the

me]=bartik:[user.permissions]=55c9d

45a6352718ec07b9b9b04cf0514415bef47

1400a4912e645f80db8808af

entity_view:block:bartik_search:[la

nguages:language_interface]=en:[the

me]=bartik:[user.permissions]=55c9d

45a6352718ec07b9b9b04cf0514415bef47

1400a4912e645f80db8808af

Cache ID

Contexts
∎ [languages:language_interface]=en
∎ [theme]=bartik
∎ [user.permissions]=55c9d45a63527

18ec07b9b9b04cf0514415bef47140
0a4912e645f80db8808af

Keys
∎ entity_view
∎ block
∎ bartik_search

tags: Cache Tags
∎ Space-delimited
∎ “Targets”
∎ Bulk identifiers
∎ Used to invalidate/delete cache entries en masse

Cache Tags
block_view

config:block.block.bartik_search

config:search.settings

rendered

∎ block_view
∎ config:block.block.bartik_search
∎ config:search.settings
∎ rendered

Gotchas
∎ Invalidation vs deletion
∎ Unknown content connections

□ Entity references
∎ Loss of cache metadata in custom templates

□ Render “content” to register bubbleable metadata
∎ CDN & Purge
∎ CDN tag hashing
∎ Expiration doesn’t mean timely deletion

□ Expiration checked on lookup
∎ Widespread invalidation with node_list and other tags

THANKS!
Any questions?

Pro Tip: Download our slides for more handy modules, links, and tips.

Dev & Debugging
∎ Renderviz module

□ Output element and bubbled cache data in Twig debug output
□ Learning and debugging tool to explore bubbling

∎ Make sure local caching is not disabled
□ Helpful resources, https://www.dx-experts.nl/blog/2017/drupal-8-development-caching

∎ Cache debug headers
□ http.response.debug_cacheability_headers container parameter to true, in

your services.yml

https://www.drupal.org/project/renderviz
https://www.drupal.org/node/2598914
https://www.dx-experts.nl/blog/2017/drupal-8-development-caching
https://www.drupal.org/docs/8/api/responses/cacheableresponseinterface#debugging

MODULES &
RESOURCES

Handy Dandy Modules
∎ Views Custom Cache Tags
∎ Handy Cache Tags
∎ Renderviz
∎ Cache Tools

∎ Purge
∎ Acquia Purge
∎ Pantheon Purge

https://www.drupal.org/project/views_custom_cache_tag
https://www.drupal.org/project/handy_cache_tags
https://www.drupal.org/project/renderviz
https://www.drupal.org/project/cache_tools
https://www.drupal.org/project/purge
https://www.drupal.org/project/acquia_purge
https://www.drupal.org/project/pantheon_advanced_page_cache

Tomes of Knowledge
∎ Cacheability of Render Arrays
∎ Coding with Cache Tags in Drupal 8
∎ D.O. Cache API Documentation

□ All the things in this section
∎ API Documentation

https://www.drupal.org/docs/8/api/render-api/cacheability-of-render-arrays
https://dev.acquia.com/blog/coding-with-cache-tags-in-drupal-8/13/09/2018/19851
https://www.drupal.org/docs/8/api/cache-api
https://api.drupal.org/api/drupal/core%21core.api.php/group/cache/8.7.x

Digging Deeper
∎ Auto-placeholdering
∎ BigPipe
∎ Cache bins

□ Custom cache bins
□ Configuration
□ Backends

∎ Custom contexts
∎ Response-level Caching

□ Handling redirects and other custom responses

https://www.drupal.org/docs/8/api/render-api/auto-placeholdering
https://www.drupal.org/docs/8/core/modules/big-pipe/overview
https://www.drupal.org/docs/8/api/cache-api/cacheableresponseinterface

1. If rendering something, I have to think about cacheability.
2. If expensive to render, it may be worth caching. What identifies

this particular representation of the thing I'm rendering?
3. Does the representation of the thing I'm rendering vary per x
4. What causes the representation of the thing I'm rendering

become outdated?
5. When does it become outdated?

Source:
https://www.drupal.org/docs/8/api/render-api/cacheability-of-rend
er-arrays#s-the-thought-process

5 Questions….

https://www.drupal.org/docs/8/api/render-api/cacheability-of-render-arrays#s-the-thought-process
https://www.drupal.org/docs/8/api/render-api/cacheability-of-render-arrays#s-the-thought-process

CREDITS
Special thanks to all the people who made and released these
awesome resources for free:
∎ Presentation template by SlidesCarnival
∎ Photographs by Unsplash
∎ Dashboard demo theme - SB Admin 2

http://www.slidescarnival.com/
http://unsplash.com/
https://startbootstrap.com/themes/sb-admin-2/

